Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: EE307
 Course Name: SIGNAL AND SYSTEMS

Max. Marks: 100

PART A

Answer all questions, each carries 5 marks.

Duration: 3 Hours

1 Check whether the system $y(t)=x\left(\frac{t}{2}\right)$ is dynamic, linear and time invariant specify the ROC.

3 State and prove the Frequency shifting and Convolution properties of Fourier
Transform.
4 State and prove sampling theorem.
5 State and prove the scaling and time shifting properties of z-transform
6 Find the z-transform of $x[n]=3 \alpha^{n} u[-n]$. Indicate ROC, poles and zeros in z-
plane.
7 Explain any five types of non-linear systems.
State any 5 properties of Discrete Fourier series.
PART B
Answer any two full questions, each carries 10 marks.
9
Consider the signal $x(t)=\left\{\begin{array}{c}t+2,-2 \leq t \leq-1 \\ 1,-1 \leq t \leq 1 \\ -t+2,1 \leq t \leq 2 \\ 0, \text { elsewhere }\end{array}\right.$
a) Write a mathematical equation for $y(t)=x(-2 t-3)$.and sketch $\mathrm{y}(\mathrm{t})$.
b) Find the total energy of $\mathrm{y}(\mathrm{t})$.

10 a) Define signum function.
b) Find the convolution of $x_{1}(t)$ and $x_{2}(t)$ given $x_{1}(t)=e^{-2 t} u(t)$ and $x_{2}(t)=e^{-5 t} u(t)$.
c) Determine the initial and final values for the given Laplace transform.

$$
\begin{equation*}
X(s)=\frac{5 s+4}{s^{2}+3 s+2} \tag{5}
\end{equation*}
$$

11 a) Determine the response of the LTI system described by the differential equation

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 y(t)=3 x(t) \tag{5}
\end{equation*}
$$

due to the input $x(t)=e^{-2 t} u(t)$. Given that $\mathrm{y}(0)=1$ and $\left.\frac{d y(t)}{d t}\right|_{t=0}=-1$
b) Plot the pole-zero diagram of the system given by the transfer function

$$
X(s)=\frac{s+3}{s^{3}+7 s^{2}+24 s+18}
$$

Also specify the ROC for this system is causal and stable, Justify your answer.

PART C

Answer any two full questions, each carries 10 marks.

Obtain the trigonometric Fourier series coefficient of the periodic function shown below.

Fig. 1
13 a) Find the frequency response and impulse response of the system described by the differential equation

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=x(t)+3 \frac{d x(t)}{d t} \tag{2}
\end{equation*}
$$

b) Explain aliasing.
c) An analog signal is expressed by the equation, $x(t)=3 \cos (10 \pi t)+\sin (50 \pi t)$.

Calculate the Nyquist rate in Hz for this signal.
14 Consider an LTI system with unit impulse response

$$
\begin{equation*}
h[n]=\beta^{n} u[n],|\beta|<1 \tag{10}
\end{equation*}
$$

Compute the output signal $\mathrm{y}[\mathrm{n}]$ for an input

$$
x[n]=u[n+12]-2 u[n+4]+u[n-7] .
$$

PART D

Answer any two full questions, each carries $\mathbf{1 0}$ marks.

15 a) Obtain the time domain signal corresponding to the following z transform.

$$
\begin{equation*}
X(z)=\frac{(2 z-7)}{(z-3)(z-2)} \text { withROC }|z|<2 \tag{5}
\end{equation*}
$$

b) Find the z transform of the signal $\mathrm{x}[\mathrm{n}]=\left(\sin \omega_{0} \mathrm{n}\right) \mathrm{u}[\mathrm{n}]$ and find ROC.

16 a) Determine the impulse response corresponding to the following transfer function if the system is stable

$$
\begin{equation*}
H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}} \tag{5}
\end{equation*}
$$

b) What is random signal? Give an example.

17 a) Find the Discrete Fourier series representation of $x[n]=\cos \frac{2 \pi}{8} n$.
b) Find the magnitude and phase response of the causal system $\mathrm{y}[\mathrm{n}]-\mathrm{y}[\mathrm{n}-1]$

$$
\begin{equation*}
+\frac{3}{16} y[n-2]=x[n]-0.5 x[n-1] . \tag{5}
\end{equation*}
$$

